To address the challenges posed by the complex shapes of hollow parts, this study examined the ultrasonic-assisted granular medium hydroforming (UGMF) process for tubular components. The dynamics of the deformation behavior and deformation control during 6063-T5 aluminum alloy tube free forming by UGMF were studied via simulations and experiments. Based on the ABAQUS software platform, a coupled method based on finite element (FE) simulation analysis and discrete element (DE) analysis for the UGMF free forming process was used. The results showed that ultrasonic vibration (UV) could reduce the forming force required for expansion and promote the flow of material at the end to the forming area as well as inhibit the decrease in the wall thickness. The accuracy of the FE-DE coupled simulation model and a parabolic geometric model was verified by testing. The results found that UV enhances material flow, decreases the forming force needed, and minimizes damage to the granular surface.