Operations Research and Decisions (Jan 2018)
Analysis of Complex Decision Problems Based on Cumulative Prospect Theory
Abstract
Complex risky decision problems involve sequences of decisions and random events. The choice at a given stage depends on the decisions taken in the previous stages, as well as on the realizations of the random events that occurred earlier. In the analysis of such situations, decision trees are used, and the criterion for choosing the optimal decision is to maximize the expected monetary value. Unfortunately, this approach often does not reflect the actual choices of individual decision makers. In descriptive decision theory, the criterion of maximizing the expected monetary value is replaced by a subjective valuation that takes into account the relative outcomes and their probabilities. This paper presents a proposal to use the principles of cumulative prospect theory to analyse complex decision problems. The concept of a certainty equivalent is used to make it possible to compare risky and non-risky alternatives. (original abstract)