Applied Sciences (Feb 2022)

Fault-Tolerant Control Scheme for the Sensor Fault in the Acceleration Process of Variable Cycle Engine

  • Lingwei Li,
  • Yuan Yuan,
  • Xinglong Zhang,
  • Songwei Wu,
  • Tianhong Zhang

DOI
https://doi.org/10.3390/app12042085
Journal volume & issue
Vol. 12, no. 4
p. 2085

Abstract

Read online

This paper presents a fault-tolerant control scheme for the sensor fault in the acceleration process of the variable cycle engine. Firstly, an adaptive equilibrium manifold model with multiple inputs and multiple outputs is established. Combined with the Kalman filter bank, sensor fault diagnosis is carried out to realize the diagnosis and signal reconstruction of the engine in the case of a single sensor and double sensor faults. On this basis, isolation and group isolation are used to diagnose sensor faults and reconstruct signal in speed closed-loop control. Then, the control plan of the acceleration process is optimized based on the target shooting method, aiming to simulate the variation of various variables in the engine acceleration process more accurately, so as to verify the feasibility of the sensor fault-tolerant control scheme. Finally, a hardware-in-loop simulation platform is built based on the idea of distributed control, and the fault-tolerant control scheme of the sensor proposed previously is verified based on this platform. The results show that the proposed scheme can accurately diagnose the sensor faults and reconstruct the signal within 0.2 s, and the actual speed can rise from 67.87% to 99.9% in 4 s, ensuring the safe and rapid completion of the acceleration process.

Keywords