AIP Advances (Jan 2022)

Airborne virus transmission under different weather conditions

  • Santosh K. Das,
  • Jan-e Alam,
  • Salvatore Plumari,
  • Vincenzo Greco

DOI
https://doi.org/10.1063/5.0082017
Journal volume & issue
Vol. 12, no. 1
pp. 015019 – 015019-7

Abstract

Read online

The COVID19 infection is known to disseminate through droplets ejected by infected individuals during coughing, sneezing, speaking, and breathing. The spread of the infection and hence its menace depend on how the virus-loaded droplets evolve in space and time with changing environmental conditions. In view of this, we investigate the evolution of the droplets within the purview of the Brownian motion of the evaporating droplets in the air with varying weather conditions under the action of gravity. We track the movement of the droplets until either they gravitationally settle on the ground or evaporate to aerosols of size 2 μm or less. Droplets with radii 2 μm or less may continue to diffuse and remain suspended in the air for a long time. The effects of relative humidity and temperature on the evaporation are found to be significant. We note that under strong flowing conditions, droplets travel large distances. It is found that the bigger droplets fall on the ground due to the dominance of gravity over the diffusive force despite the loss of mass due to evaporation. The smaller evaporating droplets may not settle on the ground but remain suspended in the air due to the dominance of the diffusive force. The fate of the intermediate size droplets depends on the weather conditions and plays crucial roles in the spread of the infection. These environment dependent effects indicate that the maintenance of physical separation to evade the virus is not corroborated, making the use of face masks indispensable.