Remote Sensing (Mar 2021)
The Decrease in Lake Numbers and Areas in Central Asia Investigated Using a Landsat-Derived Water Dataset
Abstract
Although Central Asia has a strong continental climate with a constant moisture deficit and low relative humidity, it is covered by thousands of lakes that are critical to the sustainability of ecosystems and human welfare in the region. Vulnerability to climate change and anthropogenic activities have contributed to dramatic inter-annual and seasonal changes of the lakes. In this study, we explored the high spatio–temporal dynamics of the lakes of Central Asia using the terraPulse™ monthly Landsat-derived surface water extent dataset from 2000 to 2015 and the HydroLAKES dataset. The results identified 9493 lakes and significant linear decreasing trends were identified for both the number (rate: −85 lakes/year, R2: 0.69) and area (rate: −1314.1 km2/year, R2: 0.84) of the lakes in Central Asia between 2000 and 2015. The decrease rate in lake area accounted for 1.41% of the total lake area. About 75% of the investigated lakes (7142 lakes), mainly located in the Kazakh steppe (especially in the north) and the Badghyz and Karabil semi-desert terrestrial ecological zones, experienced a decrease in the water area. Lakes with increasing water area were mainly distributed in the Northern Tibetan Plateau–Kunlun Mountains alpine desert and Qaidam Basin semi-desert zones in the east-south corner of Central Asia. The possible driving factors of lake decreases in Central Asia were explored for the Aral Sea and Tengiz Lake on yearly and monthly time scales. The Aral Sea showed the greatest decrease in the summer months because of increased evaporation and massive irrigation, while the largest decrease for Tengiz Lake was observed in early spring and was linked to decreasing snowmelt.
Keywords