Aspergillusidone G Potentiates the Anti-Inflammatory Effects of Polaprezinc in LPS-Induced BV2 Microglia: A Bioinformatics and Experimental Study
Fangfang Ban,
Longjian Zhou,
Zhiyou Yang,
Yayue Liu,
Yi Zhang
Affiliations
Fangfang Ban
Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
Longjian Zhou
Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
Zhiyou Yang
Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
Yayue Liu
Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
Yi Zhang
Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
Neuroinflammation is one of the main mechanisms involved in the progression of neurodegenerative diseases (NDs), and microglial activation is the main feature of neuroinflammation. Polaprezinc (Pol), a chelator of L-carnosine and zinc, is widely used as a clinical drug for gastric ulcers. However, its potential effects on NDs remain unexplored. In LPS-induced BV-2 microglia, we found that Pol reduced the generation of NO and ROS and revealed inhibited expression of iNOS, COX-2, and inflammatory factors such as IL-6, TNF-α, and 1L-1β by Pol using qRT-PCR and Western blotting. These effects were found to be associated with the suppression of the NF-κB signaling pathway. Moreover, we evaluated the potential synergistic effects of aspergillusidone G (Asp G) when combined with Pol. Remarkably, co-treatment with low doses of Asp G enhanced the NO inhibition by Pol from approximately 30% to 80% in LPS-induced BV2 microglia, indicating a synergistic anti-inflammatory effect. A bioinformatics analysis suggested that the synergistic mechanism of Asp G and Pol might be attributed to several targets, including NFκB1, NRF2, ABL1, TLR4, and PPARα. These findings highlight the anti-neuroinflammatory properties of Pol and its enhanced efficacy when combined with Asp G, proposing a novel therapeutic strategy for managing neuroinflammation in NDs.