Journal of Animal Science and Biotechnology (Apr 2020)

Effects of adding sodium dichloroacetate to low-protein diets on nitrogen balance and amino acid metabolism in the portal-drained viscera and liver of pigs

  • Weizhong Sun,
  • Yunxia Li,
  • Zhiru Tang,
  • Huiyuan Chen,
  • Ke Wan,
  • Rui An,
  • Liuting Wu,
  • Zhihong Sun

DOI
https://doi.org/10.1186/s40104-020-00437-2
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Identifying regulatory measures to promote glucose oxidative metabolism while simultaneously reducing amino acid oxidative metabolism is one of the foremost challenges in formulating low-protein (LP) diets designed to reduce the excretion of nitrogen-containing substances known to be potential pollutants. In this study, we investigated the effects of adding sodium dichloroacetate (DCA) to a LP diet on nitrogen balance and amino acid metabolism in the portal-drained viscera (PDV) and liver of pigs. To measure nitrogen balance, 18 barrows (40 ± 1.0 kg) were fed one of three diets (n = 6 per group): 18% crude protein (CP, control), 13.5% CP (LP), and 13.5% CP + 100 mg DCA/kg dry matter (LP-DCA). To measure amino acid metabolism in the PDV and liver, 15 barrows (40 ± 1.0 kg) were randomly assigned to one of the three diets (n = 5 per group). Four essential amino acids (Lys, Met, Thr, and Trp) were added to the LP diets such that these had amino acid levels comparable to those of the control diet. Results The LP-DCA diet reduced nitrogen excretion in pigs relative to that of pigs fed the control diet (P 0.05). There were no differences between the control and LP-DCA groups with respect to amino acid supply to the liver and extra-hepatic tissues in pigs (P > 0.05). The net release of ammonia into the portal vein and production rate of urea in the liver of pigs fed the LP-DCA diet was reduced relative to that of pigs fed the control and LP diets (P < 0.05). Conclusion The results indicated that addition of DCA to a LP diet can efficiently reduce nitrogen excretion in pigs and maximize the supply of amino acids to the liver and extra-hepatic tissues.

Keywords