Chemosensors (Jun 2023)

An Innovative Electrochemical Immuno-Platform for Monitoring Chronic Conditions Using the Biosensing of Hyaluronic Acid in Human Plasma Samples

  • Ahmad Mobed,
  • Fereshteh Kohansal,
  • Sanam Dolati,
  • Mohammad Hasanzadeh,
  • Seyed Kazem Shakouri

DOI
https://doi.org/10.3390/chemosensors11070367
Journal volume & issue
Vol. 11, no. 7
p. 367

Abstract

Read online

Hyaluronic acid (HA) is the main non-sulfated glycosaminoglycan of the extracellular matrix that is synthesized by fibroblasts and other specialized connective tissue cells. The accumulation of HA on different tissues is a characteristic of disorders that are associated with progressive tissue fibrosis. HA is also known to play a critical role in tumorigenesis and tumor metastasis. It is overproduced by many types of tumors and promotes tumor progression and multidrug resistance. There is a great necessity for the development of an easy and cost-effective detection method for the monitoring of HA for both the diagnosis and efficient treatment of related disorders. In the present study, an innovative immune device was designed for the rapid and sensitive recognition of HA in human plasma samples. For this purpose, an efficient alloy (Pt@Au) was fabricated on the surface of the gold electrode. Thus, a novel substrate was used for the preparation of an efficient transducer, which is necessary for the immobilization of biotinylated antibodies. CHA was applied for the electrochemical deposition of Pt@Au nano-alloy on Au electrodes. Additionally, the morphological study of the used nanocomposite was assessed using FESEM at a working voltage of 3 kV, and the chemical structures of the electrode were analyzed using the EDS apparatus. For the first time, a biocompatible alloy-based substrate was prepared for the study of antigen–antibody identification. The developed immunosensor has a linear response within the range of 0.156–160 ng.mL−1 with a limit of detection of 0.039 ng.mL−1 in human plasma samples. This research study offers a novel promising technique for HA analyses and is anticipated to be used in the early diagnosis of some disorders related to abnormal levels of HA in human bio-fluids. Thus, a constructed (pt@Au) nano-alloy provides a useful interface for the dense loading of AB. This excellent design loads high sensations of the biosensor for the selective detection of HA in real samples (human bio-fluids).

Keywords