PLoS ONE (Jan 2015)

Automated Forensic Animal Family Identification by Nested PCR and Melt Curve Analysis on an Off-the-Shelf Thermocycler Augmented with a Centrifugal Microfluidic Disk Segment.

  • Mark Keller,
  • Jana Naue,
  • Roland Zengerle,
  • Felix von Stetten,
  • Ulrike Schmidt

DOI
https://doi.org/10.1371/journal.pone.0131845
Journal volume & issue
Vol. 10, no. 7
p. e0131845

Abstract

Read online

Nested PCR remains a labor-intensive and error-prone biomolecular analysis. Laboratory workflow automation by precise control of minute liquid volumes in centrifugal microfluidic Lab-on-a-Chip systems holds great potential for such applications. However, the majority of these systems require costly custom-made processing devices. Our idea is to augment a standard laboratory device, here a centrifugal real-time PCR thermocycler, with inbuilt liquid handling capabilities for automation. We have developed a microfluidic disk segment enabling an automated nested real-time PCR assay for identification of common European animal groups adapted to forensic standards. For the first time we utilize a novel combination of fluidic elements, including pre-storage of reagents, to automate the assay at constant rotational frequency of an off-the-shelf thermocycler. It provides a universal duplex pre-amplification of short fragments of the mitochondrial 12S rRNA and cytochrome b genes, animal-group-specific main-amplifications, and melting curve analysis for differentiation. The system was characterized with respect to assay sensitivity, specificity, risk of cross-contamination, and detection of minor components in mixtures. 92.2% of the performed tests were recognized as fluidically failure-free sample handling and used for evaluation. Altogether, augmentation of the standard real-time thermocycler with a self-contained centrifugal microfluidic disk segment resulted in an accelerated and automated analysis reducing hands-on time, and circumventing the risk of contamination associated with regular nested PCR protocols.