Symmetry (Jun 2021)

A Method for Designing and Optimizing the Electrical Parameters of Dynamic Tuning Passive Filter

  • Yifei Wang,
  • Kaiyang Yin,
  • Huikang Liu,
  • Youxin Yuan

DOI
https://doi.org/10.3390/sym13071115
Journal volume & issue
Vol. 13, no. 7
p. 1115

Abstract

Read online

Power electronics-based apparatuses absorb non-sinusoidal currents. These are considered non-linear and non-symmetrical loads for the power grid, and they generate a harmonic current. The dynamic tuning passive filter (DTPF) is one of the best solutions for improving power quality and filtering out harmonic currents to get a symmetrical current waveform. The electrical parameters of DTPF can influence its absorbing harmonic current, tuning performance, and cost. In this paper, a method for designing and optimizing the electrical parameters of dynamic tuning passive filter is proposed in order to improve the effectiveness of DTPF and the symmetry level of the power source. First, according to the characteristics of the harmonic source, the design technical indicators of DTPF, and its topology, the design procedure for the electrical parameters of DTPF is proposed. Second, based on detailed analysis of the test results, the range of the harmonic current absorption coefficient is determined. Third, the range of the relationship coefficient is determined by analyzing the impact of the filter capacitor’s capacity on the filter performance. Fourth, the calculation method for the electrical parameters of DTPF is devised. Finally, the validity of this method is verified by several engineering cases, and the electrical parameters of the filter capacitor and electromagnetic coupling reactance converter (ECRC) under the lowest total cost are simulated and optimized. Our approach can optimize the electrical parameters of DTPF and improve the harmonic suppression effectiveness, thus leading to a more symmetrical waveform and successfully avoiding power grid problems. The research results of this study not only provide a basis for the design of ECRC, but also lay a foundation for the machining DTPF.

Keywords