IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2020)
Bistatic Forward-Looking SAR KDCT-FSFT-Based Refocusing Method for Ground Moving Target With Unknown Curve Motion
Abstract
In real application scenario of bistatic forward-looking synthetic aperture radar (BFSAR), ground moving target (GMT) is generally smeared severely in SAR image, due to its unknown range cell migration (RCM) and Doppler frequency migration (DFM). When GMT moves along an unknown curve trajectory, its high-order RCM and DFM (including the second- and third-order terms) would further aggravate the difficulty of GMT refocusing. To address this issue, an efficient GMT refocusing method via keystone-based delay-correlation transform and fast searching Fourier transform (KDCT-FSFT) is proposed. First, the KDCT is proposed to correct the first- to third-order RCMs regardless of target's motion state and position information. Meanwhile, the order of GMT's phase response is reduced as well. Then, FSFT is applied to estimate the third-order Doppler parameter of GMT. In the following, a 2-D fast Fourier transform (2D-FFT) can be applied to integrate the target signal coherently in Doppler parameters domain, where the Doppler centroid and Doppler frequency rate of GMT can be estimated. Finally, with the aforesaid estimated Doppler parameters, RCM and DFM can be well corrected and target with unknown curve motion can be finely refocused. Compared with the existing methods, not only the refocusing accuracy of the proposed method is higher, but also its processing is more efficient, since the procedures in the proposed method are performed with respect to all the range cells in the corresponding aperture, i.e., GMT refocusing is achieved by the 2-D data received in one aperture, rather than along every single range cell. Both the simulation and experimental results are given to validate the effectiveness of the proposed method.
Keywords