Nature Communications (Nov 2019)

A Bayesian machine learning approach for drug target identification using diverse data types

  • Neel S. Madhukar,
  • Prashant K. Khade,
  • Linda Huang,
  • Kaitlyn Gayvert,
  • Giuseppe Galletti,
  • Martin Stogniew,
  • Joshua E. Allen,
  • Paraskevi Giannakakou,
  • Olivier Elemento

DOI
https://doi.org/10.1038/s41467-019-12928-6
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 14

Abstract

Read online

Drug target identification is a crucial step in drug development. Here, the authors introduce a Bayesian machine learning framework that integrates multiple data types to predict the targets of small molecules, enabling identification of a new set of microtubule inhibitors and the target of the anti-cancer molecule ONC201.