BMC Medical Informatics and Decision Making (May 2021)

OASIS +: leveraging machine learning to improve the prognostic accuracy of OASIS severity score for predicting in-hospital mortality

  • Yasser EL-Manzalawy,
  • Mostafa Abbas,
  • Ian Hoaglund,
  • Alvaro Ulloa Cerna,
  • Thomas B. Morland,
  • Christopher M. Haggerty,
  • Eric S. Hall,
  • Brandon K. Fornwalt

DOI
https://doi.org/10.1186/s12911-021-01517-7
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Severity scores assess the acuity of critical illness by penalizing for the deviation of physiologic measurements from normal and aggregating these penalties (also called “weights” or “subscores”) into a final score (or probability) for quantifying the severity of critical illness (or the likelihood of in-hospital mortality). Although these simple additive models are human readable and interpretable, their predictive performance needs to be further improved. Methods We present OASIS +, a variant of the Oxford Acute Severity of Illness Score (OASIS) in which an ensemble of 200 decision trees is used to predict in-hospital mortality based on the 10 same clinical variables in OASIS. Results Using a test set of 9566 admissions extracted from the MIMIC-III database, we show that OASIS + outperforms nine previously developed severity scoring methods (including OASIS) in predicting in-hospital mortality. Furthermore, our results show that the supervised learning algorithms considered in our experiments demonstrated higher predictive performance when trained using the observed clinical variables as opposed to OASIS subscores. Conclusions Our results suggest that there is room for improving the prognostic accuracy of the OASIS severity scores by replacing the simple linear additive scoring function with more sophisticated non-linear machine learning models such as RF and XGB.

Keywords