The Cloning and Characterization of a Three-Finger Toxin Homolog (NXH8) from the Coralsnake <i>Micrurus corallinus</i> That Interacts with Skeletal Muscle Nicotinic Acetylcholine Receptors
Henrique Roman-Ramos,
Álvaro R. B. Prieto-da-Silva,
Humberto Dellê,
Rafael S. Floriano,
Lourdes Dias,
Stephen Hyslop,
Raphael Schezaro-Ramos,
Denis Servent,
Gilles Mourier,
Jéssica Lopes de Oliveira,
Douglas Edgard Lemes,
Letícia V. Costa-Lotufo,
Jane S. Oliveira,
Milene Cristina Menezes,
Regina P. Markus,
Paulo Lee Ho
Affiliations
Henrique Roman-Ramos
Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil
Álvaro R. B. Prieto-da-Silva
Laboratório de Genética, Instituto Butantan, São Paulo 05503-900, SP, Brazil
Humberto Dellê
Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil
Rafael S. Floriano
Laboratório de Toxinologia e Estudos Cardiovasculares, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente 19067-175, SP, Brazil
Lourdes Dias
Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
Stephen Hyslop
Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
Raphael Schezaro-Ramos
Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
Denis Servent
Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Département Médicaments et Technologies pour la Santé, Université Paris Saclay, Commissariat à l’énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif sur Yvette, France
Gilles Mourier
Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Département Médicaments et Technologies pour la Santé, Université Paris Saclay, Commissariat à l’énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif sur Yvette, France
Jéssica Lopes de Oliveira
Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil
Douglas Edgard Lemes
Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil
Letícia V. Costa-Lotufo
Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo 05508-000, SP, Brazil
Jane S. Oliveira
Centro de Biotecnologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil
Milene Cristina Menezes
Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil
Regina P. Markus
Laboratório de Cronofarmacologia, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil
Paulo Lee Ho
Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil
Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve–diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.