Remote Sensing (Jun 2024)

Study of Fast and Reliable Time Transfer Methods Using Low Earth Orbit Enhancement

  • Mingyue Liu,
  • Rui Tu,
  • Qiushi Chen,
  • Qi Li,
  • Junmei Chen,
  • Pengfei Zhang,
  • Xiaochun Lu

DOI
https://doi.org/10.3390/rs16112044
Journal volume & issue
Vol. 16, no. 11
p. 2044

Abstract

Read online

The Global Navigation Satellite System (GNSS) can be utilized for long-distance and high-precision time transmission. With the ongoing development of low Earth orbit (LEO) satellites and the rapidly changing geometric relationships between them, the convergence rate of ambiguity parameters in Precise Point Positioning (PPP) algorithms has increased, enabling fast and reliable time transfer. In this paper, GPS is used as an experimental case, the LEO satellite constellation is designed, and simulated LEO observation data are generated. Then, using the GPS observation data provided by IGS, a LEO-enhanced PPP model is established. The LEO-augmented PPP model is employed to facilitate faster and more reliable high-precision time transfer. The application of the LEO-augmented PPP model to time transfer is examined and discussed through experimental examples. These examples show multiple types of time transfer links, and the experimental outcomes are uniform. GPS + LEO is compared with exclusive GPS time transfer schemes. The clock offset of the time transfer link for the GPS + LEO scheme converges more swiftly, meaning that the time required for the clock offset to reach a stable level is the briefest. In this paper, standard deviation is employed to assess stability, and Allan deviation is utilized to assess frequency stability. The results show that the clock offset stability and frequency stability achieved by the GPS + LEO scheme are superior within the convergence time range. Controlled experiments with different numbers of satellites for LEO enhancement indicate that time transfer performance can be improved by increasing the number of satellites. As a result, augmenting GPS tracking data with LEO observations enhances the time transfer service compared to GPS alone.

Keywords