Revista de Teledetección (Jun 2016)

Using low density LiDAR data to map Mediterranean forest characteristics by means of an area-based approach and height threshold analysis

  • J. Guerra-Hernández,
  • M. Tomé,
  • E. González-Ferreiro

DOI
https://doi.org/10.4995/raet.2016.3980
Journal volume & issue
Vol. 0, no. 46
pp. 103 – 117

Abstract

Read online

This study reports progress in forest inventory methods involving the use of low density airborne LiDAR data and an area-based approach (ABA). It also emphasizes the usefulness of the Spanish countrywide LiDAR dataset for mapping forest stand attributes in Mediterranean stone pine forest characterized by complex orography. Lowdensity airborne LiDAR data (0.5 first returns m–2) was used to develop individual regression models for a set of forest stand variables in different types of forest. LiDAR data is now freely available for most of the Spanish territory and is provided by the Spanish National Aerial Photography Program (Plan Nacional de Ortofotografía Aérea, PNOA). The influence of height thresholds (MHT: Minimun Height Threshold and BHT: Break Height Threshold) used in extracting LiDAR metrics was also investigated. The best regression models explained 61-85%, 67-98% and 74-98% of the variability in ground-truth stand height, basal area and volume, respectively. The magnitude of error for predicting structural vegetation parameters was higher in closed deciduous and mixed forest than in the more homogeneous coniferous stands. Analysis of height thresholds (HT) revealed that these parameters were not particularly important for estimating several forest attributes in the coniferous forest; nevertheless, substantial differences in volume modelling were observed when the height thresholds (MHT and BHT) were increased in complex structural vegetation (mixed and deciduous forest). A metric-by-metric analysis revealed that there were significant differences in most of the explanatory variables computed from different height thresholds (HBT and MHT).The best models were applied to the reference stands to yield spatially explicit predictions about the forest resources. Reliable mapping of biometric variables was implemented to facilitate effective and sustainable management strategies and practices in Mediterranean Forest ecosystems.

Keywords