BMC Oral Health (Feb 2024)

Effect of thermocycling on surface topography and fracture toughness of milled and additively manufactured denture base materials: an in-vitro study

  • Mohamed M. Abdul-Monem,
  • Kenda I. Hanno

DOI
https://doi.org/10.1186/s12903-024-03991-7
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Studies investigating thermocycling effect on surface topography and fracture toughness of resins used in digitally manufactured denture bases are few. The study aimed to assess the impact of thermocycling on surface topography and fracture toughness of materials used for digitally manufactured denture bases. Methods Water sorption, solubility, hardness, surface roughness, and fracture toughness of both three-dimensional (3D)-printed and computer-aided design, computer-aided manufacturing (CAD-CAM) milled specimens (n = 50) were assessed both prior to and following 2000 thermocycles, simulating 2 years of clinical aging. Surface hardness (n = 10) was measured using a Vickers hardness testing machine, surface roughness (n = 10) was determined by a contact profilometer, and fracture toughness (n = 20) was measured using the 3-point bend test, then studying the fractured surfaces was done via a scanning electron microscope (SEM). Prior to and following thermocycling, water sorption and solubility (n = 10) were assessed. Normally distributed data was tested using two-way repeated ANOVA and two-way ANOVA, while Mann Whitney U test and the Wilcoxon signed ranks test were used to analyze data that was not normally distributed (α < 0.05). Results Following thermocycling, Vickers hardness and fracture toughness of both groups declined, with a significant reduction in values of the 3D-printed resin (P < .001). The 3D-printed denture base resins had a rougher surface following thermocycling with a significant difference (P < .001). The sorption and solubility of water of both materials were not affected by thermocycling. Conclusions Before and after thermocycling, milled specimens had lower surface roughness and a greater degree of hardness and fracture toughness than 3D-printed specimens. Thermocycling lowered hardness and fracture toughness, and increased surface roughness in both groups, but had no effect on water sorption and solubility.

Keywords