Journal of Materials and Engineering Structures (Jun 2014)
Cylindrical bending of orthotropic plate strip based on nth-order plate theory
Abstract
In this paper, cylindrical bending of orthotropic plates is presented using nth-order plate theory. Classical plate theory and parabolic shear deformation theory of Reddy can be considered as special cases of present theory. The theory accounts for realistic variation of the transverse shear stress through the thickness of plate and satisfy the traction free conditions at top and bottom surfaces of the plate. The number of unknown variables in the present theory is same as that of first order shear deformation theory. The theory is variationally consistent. The use of shear correction factors which are problem dependent and are normally associated with first order shear deformation theory is avoided in the present theory. The governing equations and associated boundary conditions are derived by the principle of virtual work. Navier solution technique is employed for the simply supported plates. The program has been developed in FORTRAN. The displacement and stresses of a simply supported plate infinitely long in y-direction under sinusoidally distributed load are calculated to demonstrate the accuracy and efficiency of the present theory.