Health Science Reports (Apr 2023)

Temporal dynamics and fatality of SARS‐CoV‐2 variants in Bangladesh

  • M. Shaminur Rahman,
  • M. Nazmul Hoque,
  • Susmita Roy Chowdhury,
  • Md. Moradul Siddique,
  • Ovinu Kibria Islam,
  • Syed Md. Galib,
  • Md. Tanvir Islam,
  • M. Anwar Hossain

DOI
https://doi.org/10.1002/hsr2.1209
Journal volume & issue
Vol. 6, no. 4
pp. n/a – n/a

Abstract

Read online

Abstract Background and Aims Since the beginning of the SARS‐CoV‐2 pandemic, multiple new variants have emerged posing an increased risk to global public health. This study aimed to investigate SARS‐CoV‐2 variants, their temporal dynamics, infection rate (IFR) and case fatality rate (CFR) in Bangladesh by analyzing the published genomes. Methods We retrieved 6610 complete whole genome sequences of the SARS‐CoV‐2 from the GISAID (Global Initiative on Sharing all Influenza Data) platform from March 2020 to October 2022, and performed different in‐silico bioinformatics analyses. The clade and Pango lineages were assigned by using Nextclade v2.8.1. SARS‐CoV‐2 infections and fatality data were collected from the Institute of Epidemiology Disease Control and Research (IEDCR), Bangladesh. The average IFR was calculated from the monthly COVID‐19 cases and population size while average CFR was calculated from the number of monthly deaths and number of confirmed COVID‐19 cases. Results SARS‐CoV‐2 first emerged in Bangladesh on March 3, 2020 and created three pandemic waves so far. The phylogenetic analysis revealed multiple introductions of SARS‐CoV‐2 variant(s) into Bangladesh with at least 22 Nextstrain clades and 107 Pangolin lineages with respect to the SARS‐CoV‐2 reference genome of Wuhan/Hu‐1/2019. The Delta variant was detected as the most predominant (48.06%) variant followed by Omicron (27.88%), Beta (7.65%), Alpha (1.56%), Eta (0.33%) and Gamma (0.03%) variant. The overall IFR and CFR from circulating variants were 13.59% and 1.45%, respectively. A time‐dependent monthly analysis showed significant variations in the IFR (p = 0.012, Kruskal–Wallis test) and CFR (p = 0.032, Kruskal–Wallis test) throughout the study period. We found the highest IFR (14.35%) in 2020 while Delta (20A) and Beta (20H) variants were circulating in Bangladesh. Remarkably, the highest CFR (1.91%) from SARS‐CoV‐2 variants was recorded in 2021. Conclusion Our findings highlight the importance of genomic surveillance for careful monitoring of variants of concern emergence to interpret correctly their relative IFR and CFR, and thus, for implementation of strengthened public health and social measures to control the spread of the virus. Furthermore, the results of the present study may provide important context for sequence‐based inference in SARS‐CoV‐2 variant(s) evolution and clinical epidemiology beyond Bangladesh.

Keywords