Metals (Sep 2017)
Characterisation of Calcium- and Phosphorus-Enriched Porous Coatings on CP Titanium Grade 2 Fabricated by Plasma Electrolytic Oxidation
Abstract
In the paper, Scanning Electron Microscopy (SEM), Energy-dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), and Glow Discharge Optical Emission Spectroscopy (GDOES) analyses of calcium- and phosphorus-enriched coatings obtained on commercial purity (CP) Titanium Grade 2 by plasma electrolytic oxidation (PEO), known also as micro arc oxidation (MAO), in electrolytes based on concentrated phosphoric acid with calcium nitrate tetrahydrate, are presented. The preliminary studies were performed in electrolytes containing 10, 300, and 600 g/L of calcium nitrate tetrahydrate, whereas for the main research the solution contained 500 g/L of the same hydrated salt. It was found that non-porous coatings, with very small amounts of calcium and phosphorus in them, were formed in the solution with 10 g/L Ca(NO3)2·4H2O, whereas the other coatings, fabricated in the consecutive electrolytes containing from 300 up to 650 g/L Ca(NO3)2·4H2O, were porous. Based on the GDOES data, it was also found that the obtained porous PEO coating may be divided into three sub-layers: the first, top, porous layer was the thinnest; the second, semi-porous layer was about 12 times thicker than the first; and the third, transition sub-layer was about 10 times thicker than the first. Based on the recorded XPS spectra, it was possible to state that the top 10-nm layer of porous PEO coatings included chemical compounds containing titanium (Ti4+), calcium (Ca2+), as well as phosphorus and oxygen (PO43− and/or HPO42− and/or H2PO4−, and/or P2O74−).
Keywords