Animals (Feb 2023)
Supplementation of Schisandrin B in Semen Extender Improves Quality and Oxidation Resistance of Boar Spermatozoa Stored at 4 °C
Abstract
During cold storage, boar spermatozoa undergo oxidative stress, which can impair sperm function and fertilizing capacity. The objective of the present study was to assess the effects of Schisandrin B (Sch B) in semen extenders on the quality of boar semen stored at hypothermia. Semen was collected from twelve Duroc boars and diluted in extenders supplemented with different concentrations of Sch B (0 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L, 20 μmol/L, and 40 μmol/L). Here, we demonstrated that 10 μmol/L Sch B provided the best effects on motility, plasma membrane integrity, acrosome integrity, sperm normality rate, average movement velocity, wobbility, mitochondrial membrane potential (MMP), and DNA integrity of sperm. The results of Sch B effects on antioxidant factors in boar sperm showed that Sch B significantly elevated the total antioxidant capacity (T-AOC) and markedly decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) content of sperm. The expression of catalase (CAT) and superoxide dismutase (SOD) mRNA was increased, while the expression of glutathione peroxidase (GPx) mRNA demonstrated no change compared to non-treated boar sperm. Compared to the non-treated group, Sch B triggered a decrease in Ca2+/protein kinase A (PKA) and lactic acid content in boar sperm. Similarly, Sch B led to a statistically higher quantitative expression of AWN mRNA and a lower quantitative expression of porcine seminal protein I (PSP-I) and porcine seminal protein II (PSP-II) mRNA. In a further reverse validation test, no significant difference was observed in any of the parameters, including adhesion protein mRNA, calcium content, lactic acid content, PKA, and protein kinase G (PKG) activity after sperm capacitation. In conclusion, the current study indicates the efficient use of Sch B with a 10 μmol/L concentration in the treatment of boar sperm through its anti-apoptosis, antioxidative, and decapacitative mechanisms, suggesting that Sch B is a novel candidate for improving antioxidation and decapacitation factors in sperm in liquid at 4 °C.
Keywords