Sensors (Nov 2020)
Modified Fixed Wall Oedometer When Considering Stress Dependence of Elastic Wave Velocities
Abstract
A modified oedometer cell for measuring the applied stresses and elastic waves at the top and bottom of the specimen is developed to evaluate the effect of the side friction on the stress dependence of the elastic wave velocities. In the modified cell, two load cells are installed at the top and bottom plates, respectively. To generate and detect the compressional and shear waves, a pair of piezo disk elements and a pair of bender elements are mounted at both the top and bottom plates. Experimental results show that the stresses measured at the bottom are smaller than those measured at the top during the loading and vice versa during unloading, regardless of the densities and heights of the specimens. Under nearly saturated conditions, the compressional wave velocities remain almost constant for the entire stress state. With plotting stresses measured at top, the shear wave velocities during unloading are greater than those during loading, whereas with plotting stresses measured at bottom, the shear wave velocities during unloading are smaller than those during loading owing to the side friction. The vertical effective stress may be simply determined from the average values of the stresses measured at the top and bottom of the specimens.
Keywords