<italic toggle="yes">Escherichia coli</italic> Sequence Type 410 Is Causing New International High-Risk Clones
Louise Roer,
Søren Overballe-Petersen,
Frank Hansen,
Kristian Schønning,
Mikala Wang,
Bent L. Røder,
Dennis S. Hansen,
Ulrik S. Justesen,
Leif P. Andersen,
David Fulgsang-Damgaard,
Katie L. Hopkins,
Neil Woodford,
Linda Falgenhauer,
Trinad Chakraborty,
Ørjan Samuelsen,
Karin Sjöström,
Thor B. Johannesen,
Kim Ng,
Jens Nielsen,
Steen Ethelberg,
Marc Stegger,
Anette M. Hammerum,
Henrik Hasman
Affiliations
Louise Roer
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
Søren Overballe-Petersen
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
Frank Hansen
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
Kristian Schønning
Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
Mikala Wang
Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
Bent L. Røder
Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
Dennis S. Hansen
Department of Clinical Microbiology, Herlev and Gentofte Hospital, Herlev, Denmark
Ulrik S. Justesen
Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
Leif P. Andersen
Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
David Fulgsang-Damgaard
Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
Katie L. Hopkins
Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom
Neil Woodford
Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom
Linda Falgenhauer
Institute of Medical Microbiology, Justus Liebig University Giessen and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
Trinad Chakraborty
Institute of Medical Microbiology, Justus Liebig University Giessen and German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
Ørjan Samuelsen
Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
Karin Sjöström
Public Health Agency of Sweden, Stockholm, Sweden
Thor B. Johannesen
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
Kim Ng
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
Jens Nielsen
Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
Steen Ethelberg
Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
Marc Stegger
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
Anette M. Hammerum
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
Henrik Hasman
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
ABSTRACT Escherichia coli sequence type 410 (ST410) has been reported worldwide as an extraintestinal pathogen associated with resistance to fluoroquinolones, third-generation cephalosporins, and carbapenems. In the present study, we investigated national epidemiology of ST410 E. coli isolates from Danish patients. Furthermore, E. coli ST410 was investigated in a global context to provide further insight into the acquisition of the carbapenemase genes blaOXA-181 and blaNDM-5 of this successful lineage. From 127 whole-genome-sequenced isolates, we reconstructed an evolutionary framework of E. coli ST410 which portrays the antimicrobial-resistant clades B2/H24R, B3/H24Rx, and B4/H24RxC. The B2/H24R and B3/H24Rx clades emerged around 1987, concurrently with the C1/H30R and C2/H30Rx clades in E. coli ST131. B3/H24Rx appears to have evolved by the acquisition of the extended-spectrum β-lactamase (ESBL)-encoding gene blaCTX-M-15 and an IncFII plasmid, encoding IncFIA and IncFIB. Around 2003, the carbapenem-resistant clade B4/H24RxC emerged when ST410 acquired an IncX3 plasmid carrying a blaOXA-181 carbapenemase gene. Around 2014, the clade B4/H24RxC acquired a second carbapenemase gene, blaNDM-5, on a conserved IncFII plasmid. From an epidemiological investigation of 49 E. coli ST410 isolates from Danish patients, we identified five possible regional outbreaks, of which one outbreak involved nine patients with blaOXA-181- and blaNDM-5-carrying B4/H24RxC isolates. The accumulated multidrug resistance in E. coli ST410 over the past two decades, together with its proven potential of transmission between patients, poses a high risk in clinical settings, and thus, E. coli ST410 should be considered a lineage with emerging “high-risk” clones, which should be monitored closely in the future. IMPORTANCE Extraintestinal pathogenic Escherichia coli (ExPEC) is the main cause of urinary tract infections and septicemia. Significant attention has been given to the ExPEC sequence type ST131, which has been categorized as a “high-risk” clone. High-risk clones are globally distributed clones associated with various antimicrobial resistance determinants, ease of transmission, persistence in hosts, and effective transmission between hosts. The high-risk clones have enhanced pathogenicity and cause severe and/or recurrent infections. We show that clones of the E. coli ST410 lineage persist and/or cause recurrent infections in humans, including bloodstream infections. We found evidence of ST410 being a highly resistant globally distributed lineage, capable of patient-to-patient transmission causing hospital outbreaks. Our analysis suggests that the ST410 lineage should be classified with the potential to cause new high-risk clones. Thus, with the clonal expansion over the past decades and increased antimicrobial resistance to last-resort treatment options, ST410 needs to be monitored prospectively.