IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2022)
Knowledge-Based Morphological Deep Transparent Neural Networks for Remote Sensing Image Classification
Abstract
Land use/land cover classification of remote sensing images provide information to take efficient decisions related to resource monitoring. There exists several algorithms for remote sensing image classification. In the recent years, Deep learning models like convolution neural networks (CNNs) are widely used for remote sensing image classification. The learning and generalization ability of CNN, results in better performance in comparison with similar type of models. The functional behavior of CNNs is unexplainable because of its multiple layers of convolution and pooling operations. This results in black box characteristics of CNNs. Motivated with this factor, a CNN model with functional transparency is proposed in the present study. The model is named as Knowledge Based Morphological Deep Transparent Neural Networks (KBMDTNN) for remote sensing image classification. The architecture of KBMDTNN model provides functional transparency due to application of morphological operators, convolutional and pooling layers, and transparent neural network. In KBMDTNN model, the morphological operator preserve the shape/size information of the objects through efficient image segmentation. Convolution and pooling layers are used to produce minimal number of features from the image. The operational transparency of proposed model is coined based on the mathematical understanding of each layer in the model instead of randomly adding layers to the architecture of model. The transparency of proposed model is also because of assigning the initial weights of NN in output layer of model with computed values instead of random values. The proposed KBMDTNN model outperformed similar type of models as tested with multispectral and hyperspectral remote sensing images. The performance of KBMDTNN model is evaluated with the metrics like overall accuracy (OA), overall accuracy standard deviation ($OA_{\text{STD}}$), producer’s accuracy (PA), user’s accuracy (UA), dispersion score (DS), and kappa coefficient (KC).
Keywords