Artificial Intelligence in Agriculture (Mar 2024)

Real-time litchi detection in complex orchard environments: A portable, low-energy edge computing approach for enhanced automated harvesting

  • Zeyu Jiao,
  • Kai Huang,
  • Qun Wang,
  • Zhenyu Zhong,
  • Yingjie Cai

Journal volume & issue
Vol. 11
pp. 13 – 22

Abstract

Read online

Litchi, a succulent and perishable fruit, presents a narrow annual harvest window of under two weeks. The advent of smart agriculture has driven the adoption of visually-guided, automated litchi harvesting techniques. However, conventional approaches typically rely on laboratory-based, high-performance computing equipment, which presents challenges in terms of size, energy consumption, and practical application within litchi orchards. To address these limitations, we propose a real-time litchi detection methodology for complex environments, utilizing portable, low-energy edge computing devices. Initially, the litchi orchard imagery is collected to enhance data generalization. Subsequently, a convolutional neural network (CNN)-based single-stage detector, YOLOx, is constructed to accurately pinpoint litchi fruit locations within the images. To facilitate deployment on portable, low-energy edge devices, we employed channel pruning and layer pruning algorithms to compress the trained model, reducing its size and parameters. Additionally, the knowledge distillation technique is harnessed to fine-tune the network. Experimental findings demonstrated that our proposed method achieved a 97.1% compression rate, yielding a compact litchi detection model of a mere 6.9 MB, while maintaining 94.9% average precision and 97.2% average recall. Processing 99 frames per second (FPS), the method exhibited a 1.8-fold increase in speed compared to the unprocessed model. Consequently, our approach can be readily integrated into portable, low-computational automatic harvesting equipment, ensuring real-time, precise litchi detection within orchard settings.

Keywords