Frontiers in Physiology (May 2022)

A Lumped Two-Compartment Model for Simulation of Ventricular Pump and Tissue Mechanics in Ischemic Heart Disease

  • Tijmen Koopsen,
  • Nick Van Osta,
  • Tim Van Loon,
  • Frans A. Van Nieuwenhoven,
  • Frits W. Prinzen,
  • Bas R. Van Klarenbosch,
  • Feddo P. Kirkels,
  • Arco J. Teske,
  • Kevin Vernooy,
  • Kevin Vernooy,
  • Tammo Delhaas,
  • Joost Lumens

DOI
https://doi.org/10.3389/fphys.2022.782592
Journal volume & issue
Vol. 13

Abstract

Read online

Introduction: Computational modeling of cardiac mechanics and hemodynamics in ischemic heart disease (IHD) is important for a better understanding of the complex relations between ischemia-induced heterogeneity of myocardial tissue properties, regional tissue mechanics, and hemodynamic pump function. We validated and applied a lumped two-compartment modeling approach for IHD integrated into the CircAdapt model of the human heart and circulation.Methods: Ischemic contractile dysfunction was simulated by subdividing a left ventricular (LV) wall segment into a hypothetical contractile and noncontractile compartment, and dysfunction severity was determined by the noncontractile volume fraction (NCVF). Myocardial stiffness was determined by the zero-passive stress length (Ls0,pas) and nonlinearity (kECM) of the passive stress-sarcomere length relation of the noncontractile compartment. Simulated end-systolic pressure volume relations (ESPVRs) for 20% acute ischemia were qualitatively compared between a two- and one-compartment simulation, and parameters of the two-compartment model were tuned to previously published canine data of regional myocardial deformation during acute and prolonged ischemia and reperfusion. In six patients with myocardial infarction (MI), the NCVF was automatically estimated using the echocardiographic LV strain and volume measurements obtained acutely and 6 months after MI. Estimated segmental NCVF values at the baseline and 6-month follow-up were compared with percentage late gadolinium enhancement (LGE) at 6-month follow-up.Results: Simulation of 20% of NCVF shifted the ESPVR rightward while moderately reducing the slope, while a one-compartment simulation caused a leftward shift with severe reduction in the slope. Through tuning of the NCVF, Ls0,pas, and kECM, it was found that manipulation of the NCVF alone reproduced the deformation during acute ischemia and reperfusion, while additional manipulations of Ls0,pas and kECM were required to reproduce deformation during prolonged ischemia and reperfusion. Out of all segments with LGE>25% at the follow-up, the majority (68%) had higher estimated NCVF at the baseline than at the follow-up. Furthermore, the baseline NCVF correlated better with percentage LGE than NCVF did at the follow-up.Conclusion: We successfully used a two-compartment model for simulation of the ventricular pump and tissue mechanics in IHD. Patient-specific optimizations using regional myocardial deformation estimated the NCVF in a small cohort of MI patients in the acute and chronic phase after MI, while estimated NCVF values closely approximated the extent of the myocardial scar at the follow-up. In future studies, this approach can facilitate deformation imaging–based estimation of myocardial tissue properties in patients with cardiovascular diseases.

Keywords