Biology (May 2022)
Effects of Maximal and Submaximal Anaerobic and Aerobic Running on Subsequent Change-of-Direction Speed Performance among Police Students
Abstract
Change-of-direction speed (CODS) directly impacts success in sports, police, and military performance. Movements requiring CODS are often preceded by aerobic or anaerobic running. Therefore, this study investigated the effects of maximal and submaximal anaerobic and aerobic running on subsequent CODS performance. A sample of 50 police students (42% female and 58% male) performed a maximal 300-yard shuttle run test (SR300y) and a 2.4-km Cooper test (CT2.4km) at maximal effort and also at 95, 90, 85, 80, and 75% of maximal effort. CODS was assessed using the Illinois Agility Test (IAT) immediately following each intensity level of each test at 12 separate testing sessions. To avoid fatigue, the period between each consecutive session was a minimum of 3 days. Paired samples t-tests were used to determine the differences between the two conditions (anaerobic lactic and aerobic) and for the IAT. A repeated measure analysis of variance with a Bonferroni post hoc test was used to analyze partial effects of different running intensities on the IAT. A significant reduction in speed was observed between the initial IATmax time and the IATmax time after performing the SR300y at intensities of 95, 90, 85, and 80% of maximal speed on this test. IAT performance was significantly slower when performed after the CT2.4km at 95 and 90% of maximal aerobic speed. The effects of the SR300y on the IAT were significantly greater than the effects of the CT2.4km. No significant differences were found by sex. Building up to 90% intensity, anaerobic running has a greater negative impact on subsequent CODS performance than does aerobic running.
Keywords