Molecules (Jan 2022)

Antifungal and Anti-Virulent Activity of <i>Origanum majorana</i> L. Essential Oil on <i>Candida albicans</i> and In Vivo Toxicity in the <i>Galleria mellonella</i> Larval Model

  • Banu Kaskatepe,
  • Sinem Aslan Erdem,
  • Sukran Ozturk,
  • Zehra Safi Oz,
  • Eldan Subasi,
  • Mehmet Koyuncu,
  • Josipa Vlainić,
  • Ivan Kosalec

DOI
https://doi.org/10.3390/molecules27030663
Journal volume & issue
Vol. 27, no. 3
p. 663

Abstract

Read online

The aim of this study was to investigate and compare in detail both the antifungal activity in vitro (with planktonic and biofilm-forming cells) and the essential oil composition (EOs) of naturally growing (OMN) and cultivated (OMC) samples of Origanum majorana L. (marjoram). The essential oil composition was analyzed using GC-MS. The major constituent of both EOs was carvacrol: 75.3% and 84%, respectively. Both essential oils showed high antifungal activity against clinically relevant Candida spp. with IC50 and IC90 less than or equal to 0.5 µg mL−1 and inhibition of biofilm with a concentration of 3.5 µg mL−1 or less. Cultivated marjoram oil showed higher anti-biofilm activity against C. albicans. In addition, OMC showed greater inhibition of germ-tube formation (inhibition by 83% in Spider media), the major virulence factor of C. albicans at a concentration of 0.125 µg mL−1. Both EOs modulated cell surface hydrophobicity (CSH), but OMN proved to be more active with a CSH% up to 58.41%. The efficacy of O. majorana EOs was also investigated using Galleria mellonella larvae as a model. It was observed that while the larvae of the control group infected with C. albicans (6.0 × 108 cells) and not receiving treatment died in the controls carried out after 24 h, all larvae in the infected treatment group survived at the end of the 96th hour. When the treatment group and the infected group were evaluated in terms of vital activities, it was found that the difference was statistically significant (p C. albicans and the effects of O. majorana EOs on the hemocytes of the model organism and the blastospores of C. albicans were evaluated by light microscopy on slides stained with Giemsa. Cytological examination in the treatment group revealed that C. albicans blastospores were phagocytosed and morphological changes occurred in hemocytes. Our results indicated that the essential oil of both samples showed strong antifungal activities against planktonic and biofilm-forming C. albicans cells and also had an influence on putative virulence factors (germ-tube formation and its length and on CSH).

Keywords