Fundamental Research (May 2021)
New insight into iron biogeochemical cycling in soil-rice plant system using iron isotope fractionation
Abstract
Iron (Fe) migration in soil-plants is a critical part of Fe biogeochemical cycling in the earth surface system. Fe isotope fractionation analysis in the soil-rice system is promising for quantitatively assessing various pathways and clarifying Fe transformation processes. However, the mechanisms of Fe isotope fractionation in the soil-rice system are not well understood. In this study, the Fe isotopic compositions (δ56Fe) of rhizosphere soils, pore water, Fe plaque, and rice plant tissues at the jointing and mature stages of the plants were determined. The rice plants were slightly enriched in heavier δ56Fe by ∼0.3‰ relative to the soil, and the stele and cortex showed similar δ56Fe values, indicating that the uptake of Fe by rice plants predominantly occurred via Fe(III)-phytosiderophores (Fe(III)-PS) chelation, but not Fe(III) reduction. Additionally, at both the jointing and mature stages, the rice plant tissues showed similar δ56Fe values. However, the Fe isotope fractionation between the roots and stems (Δ56Feroot−stem) was 1.39 ± 0.13‰, which is similar to the previously Ab initio-calculated values between Fe(III)-citrate and Fe(III)- 2-deoxymugineic acid (DMA), indicating that both the phloem and xylem have similar δ56Fe values, and the major Fe-chelating substances in the phloem of the rice plants are Fe(III)-DMA and Fe(II)- Nicotianamine (NA). Therefore, this study demonstrates that Fe isotope fractionation can be used as a signature for interpreting the Fe uptake and translocation mechanism in the soil-rice system.