Animal Models and Experimental Medicine (Oct 2024)

The ever‐changing microenvironment of Staphylococcus aureus in cutaneous infections

  • Zhenru Zhou,
  • Jing Tian,
  • Shi Li,
  • Liyue Fei,
  • Min Dai,
  • Nana Long

DOI
https://doi.org/10.1002/ame2.12413
Journal volume & issue
Vol. 7, no. 5
pp. 707 – 716

Abstract

Read online

Abstract Background Staphylococcus aureus is responsible for the majority of skin and soft tissue infections, which are often diagnosed at a late stage, thereby impacting treatment efficacy. Our study was designed to reveal the physiological changes at different stages of infection by S. aureus through the combined analysis of variations in the skin microenvironment, providing insights for the diagnosis and treatment of S. aureus infections. Methods We established a murine model of skin and soft tissue infection with S. aureus as the infectious agent to investigate the differences in the microenvironment at different stages of infection. By combining analysis of the host immune status and histological observations, we elucidate the progression of S. aureus infection in mice. Results The results indicate that the infection process in mice can be divided into at least two stages: early infection (1–3 days post‐infection) and late infection (5–7 days post‐infection). During the early stage of infection, notable symptoms such as erythema and abundant exudate at the infection site were observed. Histological examination revealed infiltration of numerous neutrophils and bacterial clusters, accompanied by elevated levels of cytokines (IL‐6, IL‐10). There was a decrease in microbial alpha diversity within the microenvironment (Shannon, Faith's PD, Chao1, Observed species, Simpson, Pielou's E). In contrast, during the late stage of infection, a reduction or even absence of exudate was observed at the infected site, accompanied by the formation of scabs. Additionally, there was evidence of fibroblast proliferation and neovascularization. The levels of cytokines and microbial composition gradually returned to a healthy state. Conclusion This study reveals synchrony between microbial composition and histological/immunological changes during S. aureus‐induced SSTIs.

Keywords