Catalysts (Dec 2019)

Encapsulated Ni@La<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> Catalyst with a One-Pot Method for the Dry Reforming of Methane

  • Luhui Wang,
  • Rong Hu,
  • Hui Liu,
  • Qinhong Wei,
  • Dandan Gong,
  • Liuye Mo,
  • Hengcong Tao,
  • Zhonghuai Zhang

DOI
https://doi.org/10.3390/catal10010038
Journal volume & issue
Vol. 10, no. 1
p. 38

Abstract

Read online

Ni nanoparticles encapsulated within La2O3 porous system (Ni@La2O3), the latter supported on SiO2 (Ni@La2O3)/SiO2), effectively inhibit carbon deposition for the dry reforming of methane. In this study, Ni@La2O3/SiO2 catalyst was prepared using a one-pot colloidal solution combustion method. Catalyst characterization demonstrates that the amorphous La2O3 layer was coated on SiO2, and small Ni nanoparticles were encapsulated within the layer of amorphous La2O3. During 50 h of dry reforming of methane at 700 °C and using a weight hourly space velocity (WHSV) of 120,000 mL gcat−1 h−1, the CH4 conversion obtained was maintained at 80%, which is near the equilibrium value, while that of impregnated Ni−La2O3/SiO2 catalyst decreased from 63% to 49%. The Ni@La2O3/SiO2 catalyst exhibited very good resistance to carbon deposition, and only 1.6 wt% carbon was formed on the Ni@La2O3/SiO2 catalyst after 50 h of reaction, far lower than that of 11.5 wt% deposited on the Ni−La2O3/SiO2 catalyst. This was mainly attributed to the encapsulated Ni nanoparticles in the amorphous La2O3 layer. In addition, after reaction at 700 °C for 80 h with a high WHSV of 600,000 mL gcat−1 h−1, the Ni@La2O3/SiO2 catalyst exhibited high CH4 conversion rate, ca. 10.10 mmol gNi−1 s−1. These findings outline a simple synthesis method to prepare supported encapsulated Ni within a metal oxide porous structure catalyst for the dry reforming of methane reaction.

Keywords