Applied Sciences (Aug 2020)
DAWE: A Double Attention-Based Word Embedding Model with Sememe Structure Information
Abstract
Word embedding is an important reference for natural language processing tasks, which can generate distribution presentations of words based on many text data. Recent evidence demonstrates that introducing sememe knowledge is a promising strategy to improve the performance of word embedding. However, previous works ignored the structure information of sememe knowledges. To fill the gap, this study implicitly synthesized the structural feature of sememes into word embedding models based on an attention mechanism. Specifically, we propose a novel double attention word-based embedding (DAWE) model that encodes the characteristics of sememes into words by a “double attention” strategy. DAWE is integrated with two specific word training models through context-aware semantic matching techniques. The experimental results show that, in word similarity task and word analogy reasoning task, the performance of word embedding can be effectively improved by synthesizing the structural information of sememe knowledge. The case study also verifies the power of DAWE model in word sense disambiguation task. Furthermore, the DAWE model is a general framework for encoding sememes into words, which can be integrated into other existing word embedding models to provide more options for various natural language processing downstream tasks.
Keywords