Membranes (Nov 2020)

Monitoring Biofouling Potential Using ATP-Based Bacterial Growth Potential in SWRO Pre-Treatment of a Full-Scale Plant

  • Almotasembellah Abushaban,
  • Sergio G. Salinas-Rodriguez,
  • Moses Kapala,
  • Delia Pastorelli,
  • Jan C. Schippers,
  • Subhanjan Mondal,
  • Said Goueli,
  • Maria D. Kennedy

DOI
https://doi.org/10.3390/membranes10110360
Journal volume & issue
Vol. 10, no. 11
p. 360

Abstract

Read online

Several potential growth methods have been developed to monitor biological/organic fouling potential in seawater reverse osmosis (SWRO), but to date the correlation between these methods and biofouling of SWRO has not been demonstrated. In this research, the relation between a new adenosine triphosphate (ATP)-based bacterial growth potential (BGP) test of SWRO feed water and SWRO membrane performance is investigated. For this purpose, the pre-treatment of a full-scale SWRO plant including dissolved air flotation (DAF) and two stage dual media filtration (DMF) was monitored for 5 months using BGP, orthophosphate, organic fractions by liquid chromatography coupled with organic carbon detection (LC-OCD), silt density index (SDI), and modified fouling index (MFI). Results showed that particulate fouling potential was well controlled through the SWRO pre-treatment as the measured SDI and MFI in the SWRO feed water were below the recommended values. DAF in combination with coagulation (1–5 mg-Fe3+/L) consistently achieved 70% removal of orthophosphate, 50% removal of BGP, 25% removal of biopolymers, and 10% removal of humic substances. Higher BGP (100–950 µg-C/L) in the SWRO feed water corresponded to a higher normalized pressure drop in the SWRO, suggesting the applicability of using BGP as a biofouling indicator in SWRO systems. However, to validate this conclusion, more SWRO plants with different pre-treatment systems need to be monitored for longer periods of time.

Keywords