Telfor Journal (Jul 2023)
Resilient Multipath Routing Protocol to Enable Hazardous event Monitoring with Wireless Sensor Network
Abstract
With the growing impact of climate change, the occurrence of hazardous spatial events increases. Wireless sensor networks are suitable to sense, monitor, and report such events in remote or inaccessible locations. Hazardous events are rare compared to the network's lifetime, thus maintaining its consistency must be realized energy efficiently. During the impact, the network must monitor the event with precision, and report the incidence, while mitigating the loss of perishing nodes. To fulfill these requirements, we propose the Self-healing Multipath Routing Protocol that is based on the Heterogeneous Disjoint Multipath Routing Protocol and introduces application-specific extensions to improve network stability, resiliency, and failover. To realize the monitoring of spatially extended hazardous events we introduce an event-based, application-level protocol. To evaluate the routing protocol, we perform simulations utilizing a cellular automaton-based wildfire model as the spatial event and provide measurement results including delivery ratio, consumed energy, and protocol-specific metrics.
Keywords