APL Photonics (Mar 2018)

Resolution enhancement in deep-tissue nanoparticle imaging based on plasmonic saturated excitation microscopy

  • Gitanjal Deka,
  • Kentaro Nishida,
  • Kentaro Mochizuki,
  • Hou-Xian Ding,
  • Katsumasa Fujita,
  • Shi-Wei Chu

DOI
https://doi.org/10.1063/1.5021455
Journal volume & issue
Vol. 3, no. 3
pp. 031301 – 031301-8

Abstract

Read online

Recently, many resolution enhancing techniques are demonstrated, but most of them are severely limited for deep tissue applications. For example, wide-field based localization techniques lack the ability of optical sectioning, and structured light based techniques are susceptible to beam distortion due to scattering/aberration. Saturated excitation (SAX) microscopy, which relies on temporal modulation that is less affected when penetrating into tissues, should be the best candidate for deep-tissue resolution enhancement. Nevertheless, although fluorescence saturation has been successfully adopted in SAX, it is limited by photobleaching, and its practical resolution enhancement is less than two-fold. Recently, we demonstrated plasmonic SAX which provides bleaching-free imaging with three-fold resolution enhancement. Here we show that the three-fold resolution enhancement is sustained throughout the whole working distance of an objective, i.e., 200 μm, which is the deepest super-resolution record to our knowledge, and is expected to extend into deeper tissues. In addition, SAX offers the advantage of background-free imaging by rejecting unwanted scattering background from biological tissues. This study provides an inspirational direction toward deep-tissue super-resolution imaging and has the potential in tumor monitoring and beyond.