Journal of Functional Biomaterials (Jul 2023)

Properties of Dual-Crosslinked Collagen-Based Membranes as Corneal Repair Material

  • Lulu Wang,
  • Yuehai Peng,
  • Wenfang Liu,
  • Li Ren

DOI
https://doi.org/10.3390/jfb14070360
Journal volume & issue
Vol. 14, no. 7
p. 360

Abstract

Read online

Corneal disease has become the second leading cause of blindness in the world. Corneal transplantation is currently considered to be one of the common treatments for vision loss. This paper presents a novel approach utilizing dual-crosslinked membranes composed of polyrotaxane multiple aldehydes (PRAs), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and N-hydroxysuccinimide (NHS) in the development process. Collagen was crosslinked, respectively, by EDC/NHS and PRAs to form stable amide bonds and imine groups. Through the formation of a double interpenetrating network, dual-crosslinked (Col-EDC-PRA) membranes exhibited enhanced resistance to collagenase degradation and superior mechanical properties compared to membranes crosslinked with a single crosslinker. Furthermore, Col-EDC-PRA membranes display favorable light transmittance and water content characteristics. Cell experiments showed that Col-EDC-PRA membranes were noncytotoxic and were not significantly different from other membranes. In a rabbit keratoplasty model, corneal stromal repair occurred at 5 months, evidenced by the presence of stromal cells and neo-stroma, as depicted in hematoxylin–eosin-stained histologic sections and optical coherence tomography images of the anterior segment. Moreover, there was no inflammation and corneal neovascularization, as well as no corneal rejection reaction in the surgical area. Overall, the results demonstrated that the dual-crosslinked membranes served effectively for corneal tissue regeneration after corneal defect.

Keywords