International Journal of Molecular Sciences (Sep 2022)

Addition of Synthetic Biomaterials to Deproteinized Bovine Bone Mineral (DBBM) for Bone Augmentation—A Preclinical In Vivo Study

  • Masako Fujioka-Kobayashi,
  • Hiroki Katagiri,
  • Niklaus P. Lang,
  • Jean-Claude Imber,
  • Benoit Schaller,
  • Nikola Saulacic

DOI
https://doi.org/10.3390/ijms231810516
Journal volume & issue
Vol. 23, no. 18
p. 10516

Abstract

Read online

(1) Aim: To investigate the effect of synthetic bone substitutes, α-tricalcium phosphate (α-TCP) or bi-layered biphasic calcium-phosphate (BBCP) combined with deproteinized bovine bone mineral (DBBM), on bone formation. (2) Methods: Thirty critical size defects were randomly treated with the following five different treatment modalities: (1) negative control (NC, empty), (2) DBBM, (3) α-TCP + DBBM (1:1), (4) BBCP 3%HA/97%α-TCP + DBBM (1:1), and (5) BBCP 6%HA/94%α-TCP + DBBM (1:1). The samples, at four weeks post-surgery, were investigated by micro-CT and histological analysis. (3) Results: A similar level of new bone formation was demonstrated in the DBBM with α-TCP bone substitute groups when compared to the negative control by histomorphometry. DBBM alone showed significantly lower new bone area than the negative control (p = 0.0252). In contrast to DBBM, the micro-CT analysis revealed resorption of the α-TCP + DBBM, BBCP 3%HA/97%α-TCP + DBBM and BBCP 6%HA/94%α-TCP + DBBM, as evidenced by a decrease of material density (p = 0.0083, p = 0.0050 and p = 0.0191, respectively), without changing their volume. (4) Conclusions: New bone formation was evident in all defects augmented with biomaterials, proving the osteoconductive properties of the tested material combinations. There was little impact of the HA coating degree on α-TCP in bone augmentation potential and material resorption for four weeks when mixed with DBBM.

Keywords