PLOS Global Public Health (Jan 2022)

Differences and agreement between two portable hand-held spirometers across diverse community-based populations in the Prospective Urban Rural Epidemiology (PURE) study.

  • MyLinh Duong,
  • Sumathy Rangarajan,
  • Michele Zaman,
  • Nafiza Mat Nasir,
  • Pamela Seron,
  • Karen Yeates,
  • Afzalhussein M Yusufali,
  • Rasha Khatib,
  • Lap Ah Tse,
  • Chuangshi Wang,
  • Andreas Wielgosz,
  • Koon Teo,
  • Rajesh Kumar,
  • Alvaro Avezum,
  • Rosnah Ismail,
  • Burcu Tumerdem Çalık,
  • Soumya Gopakumar,
  • Omar Rahman,
  • Katarzyna Zatońska,
  • Annika Rosengren,
  • Johanna Otero,
  • Roya Kelishadi,
  • Rafael Diaz,
  • Thandi Puoane,
  • Salim Yusuf

DOI
https://doi.org/10.1371/journal.pgph.0000141
Journal volume & issue
Vol. 2, no. 2
p. e0000141

Abstract

Read online

IntroductionPortable spirometers are commonly used in longitudinal epidemiological studies to measure and track the forced expiratory volume in first second (FEV1) and forced vital capacity (FVC). During the course of the study, it may be necessary to replace spirometers with a different model. This raise questions regarding the comparability of measurements from different devices. We examined the correlation, mean differences and agreement between two different spirometers, across diverse populations and different participant characteristics.MethodsFrom June 2015 to Jan 2018, a total of 4,603 adults were enrolled from 628 communities in 18 countries and 7 regions of the world. Each participant performed concurrent measurements from the MicroGP and EasyOne spirometer. Measurements were compared by the intra-class correlation coefficient (ICC) and Bland-Altman method.ResultsApproximately 65% of the participants achieved clinically acceptable quality measurements. Overall correlations between paired FEV1 (ICC 0.88 [95% CI 0.87, 0.88]) and FVC (ICC 0.84 [0.83, 0.85]) were high. Mean differences between paired FEV1 (-0.038 L [-0.053, -0.023]) and FVC (0.033 L [0.012, 0.054]) were small. The 95% limits of agreement were wide but unbiased (FEV1 984, -1060; FVC 1460, -1394). Similar findings were observed across regions. The source of variation between spirometers was mainly at the participant level. Older age, higher body mass index, tobacco smoking and known COPD/asthma did not adversely impact on the inter-device variability. Furthermore, there were small and acceptable mean differences between paired FEV1 and FVC z-scores using the Global Lung Initiative normative values, suggesting minimal impact on lung function interpretation.ConclusionsIn this multicenter, diverse community-based cohort study, measurements from two portable spirometers provided good correlation, small and unbiased differences between measurements. These data support their interchangeable use across diverse populations to provide accurate trends in serial lung function measurements in epidemiological studies.