Bioengineering (Mar 2023)

Effects of Lumbar Stabilization Exercises on Isokinetic Strength and Muscle Tension in Sedentary Men

  • Seunghyeok Yeom,
  • Hyeongdo Jeong,
  • Hyungwoo Lee,
  • Kyoungkyu Jeon

DOI
https://doi.org/10.3390/bioengineering10030342
Journal volume & issue
Vol. 10, no. 3
p. 342

Abstract

Read online

Lumbar stabilization exercises (LSE) lead to high levels of erector spinae muscle (ESM) activation, which has a positive effect on improving physical function. The purpose of this study is to identify factors explaining changes in muscle strength after 7 weeks of LSE and to evaluate changes in stiffness and contraction of the ESM. All participants (male: n = 42, age = 28.26 ± 10.97) were assessed for 60°/s isokinetic extensor muscle strength and tension using a tensiomyography (TMG) and isokinetic device before and after LSE. Maximum displacement (Dm) and average velocity up to 90% Dm (Vc 90) were significantly different before and after LSE. Additionally, participants’ 60°/s isokinetic extensor strength was significantly higher after exercise. A regression analysis was conducted to test the explanatory power of the variables, and positive results were obtained in the increase in extensor strength before and after Vc 90 and LSE. Furthermore, statistical significance was set at p < 0.05. After LSE, the increase in 60°/s isokinetic extensor strength and ESM’s Dm and Vc 90 can be interpreted as positive changes post-exercise in endurance muscles with a higher percentage of type I fibers. Our results can contribute to predicting the long-term exercise effect in sedentary workers and developing an individualized strategic exercise program.

Keywords