Atmosphere (Mar 2022)

Characterization of Aerosol Pollution in Two Hungarian Cities in Winter 2009–2010

  • Enikő Furu,
  • Anikó Angyal,
  • Zoltán Szoboszlai,
  • Enikő Papp,
  • Zsófia Török,
  • Zsófia Kertész

DOI
https://doi.org/10.3390/atmos13040554
Journal volume & issue
Vol. 13, no. 4
p. 554

Abstract

Read online

In this study, atmospheric particulate matter (APM) pollution was compared in urban background sites of two cities in Hungary—namely the capital Budapest and Debrecen—by analyzing daily aerosol samples collected between 8 December 2009 and 18 March 2010. Concentration, elemental composition, including BC, and sources of fine (PM2.5) and coarse (PM2.5–10) aerosol pollution, as well as their variation due to meteorological conditions and anthropogenic activities, were determined for both cities. The average PM2.5 concentrations were 22 μg/m3 and 17 μg/m3 in Budapest and Debrecen, respectively. In the case of PM10, the mean concentration was 32 μg/m3 in Budapest and 23 μg/m3 in Debrecen. The concentration of the coarse fraction decreased significantly over the weekends compared to working days. The number of exceedances of the WHO recommended limit value for PM2.5 (15 μg/m3) were 67 in Budapest and 46 in Debrecen, which corresponds to 73% and 50% of the sampling days, respectively. At the time of the exceedances the daily average temperature was below freezing. The average PM2.5/PM10 ratio was 70% and 75% for the two sites, indicating the dominance of the fine fraction aerosol particles during the study period. Elements of natural origin (Al, Si, Ca, Ti, Mn, Fe, Ba) and chlorine were found to be dominant in the coarse fraction, while elements of anthropogenic origin (S, K, Cu, Zn, Pb) were characteristic to the fine fraction. Similar concentrations were measured in the two cities in the case of S which originates from regional transport and K which serves as a tracer for biomass combustion. Traffic-related elements were present in 2–3 times higher concentrations in Budapest. The episodic peaks in the Cl time series could be attributed to salting after snowfalls. The following sources of APM pollution were identified by using the EPA Positive Matrix Factorization (PMF) 5.0 receptor model: soil, traffic, road dust, secondary sulfate, biomass burning, and de-icing of streets. On polluted days when the PM2.5 concentration exceeded the 25 μg/m3 value the contribution of secondary sulfate, domestic heating, and traffic increased significantly compared to the average. On weekends and holidays the contribution of soil and traffic decreased. The main pollution sources and their contributions were similar to the ones in other cities in the region. Comparing our findings to results from winter 2015 it can be concluded that while the PM2.5 pollution level remained almost the same, a significant increase in the contribution of biomass burning was observed in both cities from 2010 to 2015, indicating a change of heating habits.

Keywords