Membranes (Feb 2022)

Carbon Nanodots-Embedded Pullulan Nanofibers for Sulfathiazole Removal from Wastewater Streams

  • Muhammad Omer Aijaz,
  • Munir Ahmad,
  • Mohammad I. Al-Wabel,
  • Mohammad Rezaul Karim,
  • Adel R. A. Usman,
  • Abdulaziz K. Assaifan

DOI
https://doi.org/10.3390/membranes12020228
Journal volume & issue
Vol. 12, no. 2
p. 228

Abstract

Read online

Carbon nanodots (CNDs)-embedded pullulan (PUL) nanofibers were developed and successfully applied for sulfathiazole (STZ) removal from wastewater streams for the first time. The CNDs were incorporated into PUL at 0.0%, 1.0%, 2.0%, and 3.0% (w/w) to produce M1, M2, M3, and M4 nanofibers (PUL-NFs), respectively. The produced PUL-NFs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), thermal gravimetric analysis (TGA) and Differential scanning calorimetry (DSC) and applied for STZ removal from aqueous solutions through pH, kinetics, and equilibrium batch sorption trials. A pH range of 4.0–6.0 was observed to be optimal for maximum STZ removal. Pseudo-second order, intraparticle diffusion, and Elovich models were suitably fitted to kinetics adsorption data (R2 = 0.82–0.99), whereas Dubinin–Radushkevich, Freundlich, and Langmuir isotherms were fitted to equilibrium adsorption data (R2= 0.88–0.99). STZ adsorption capacity of PUL-NFs improved as the amount of embedded CNDs increased. Maximum STZ adsorption capacities of the synthesized PUL-NFs were in the order of: M4 > M3 > M2 > M1 (133.68, 124.27, 93.09, and 35.04 mg g−1, respectively). Lewis acid–base reaction and π-π electron donor–acceptor interactions were the key STZ removal mechanisms under an acidic environment, whereas H-bonding and diffusion were key under a basic environment. Therefore, CNDs-embedded PUL-NFs could be employed as an environmentally friendly, efficient, and non-toxic adsorbent to remove STZ from wastewater streams.

Keywords