Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease (Apr 2018)
Reliability and Physiological Interpretation of Pulmonary Gas Exchange by “Circulatory Equivalents” in Chronic Heart Failure
Abstract
BackgroundPeak ratios of pulmonary gas‐exchange to ventilation during exercise (V˙O2/V˙E and V˙CO2/V˙E, termed “circulatory equivalents”) are sensitive to heart failure (HF) severity, likely reflecting low and/or poorly distributed pulmonary perfusion. We tested whether peak V˙O2/V˙E and V˙CO2/V˙E would: (1) distinguish HF patients from controls; (2) be independent of incremental exercise protocol; and (3) correlate with lactate threshold (LT) and ventilatory compensation point (VCP), respectively. Methods and ResultsTwenty‐four HF patients (61±11 years) with reduced ejection fraction (31±8%) and 11 controls (63±7 years) performed ramp‐incremental cycle ergometry. Eighteen HF patients also performed slow (5±1 W/min), medium (9±4 W/min), and fast (19±6 W/min) ramps. Peak V˙O2/V˙E and V˙CO2/V˙E from X‐Y plot, and LT and VCP from 9‐panel plot, were determined by 2 independent, blinded, assessors. Peak V˙O2/V˙E (31.2±4.4 versus 41.8±4.8 mL/L; P<0.0001) and V˙CO2/V˙E (29.3±3.0 versus 36.9±4.0 mL/L; P<0.0001) were lower in HF than controls. Within individuals, there was no difference across 3 ramp rates in peak V˙O2/V˙E (P=0.62) or V˙CO2/V˙E (P=0.97). Coefficient of variation (CV) in peak V˙O2/V˙E was lower than for LT (5.1±2.1% versus 8.2±3.7%; P=0.014), and coefficient of variation in peak V˙CO2/V˙E was lower than for VCP (3.3±1.8% versus 8.7±4.2%; P<0.001). In all participants, peak V˙O2/V˙E was correlated with, but occurred earlier than, LT (r2=0.94; mean bias, −0.11 L/min), and peak V˙CO2/V˙E was correlated with, but occurred earlier than, VCP (r2=0.98; mean bias −0.08 L/min). ConclusionsPeak circulatory equivalents during exercise are strongly associated with (but not identical to) LT and VCP. Peak circulatory equivalents are reliable, objective, effort‐independent indices of gas‐exchange abnormality in HF.
Keywords