Nature Communications (Feb 2023)

Hypothesis-free phenotype prediction within a genetics-first framework

  • Chang Lu,
  • Jan Zaucha,
  • Rihab Gam,
  • Hai Fang,
  • Ben Smithers,
  • Matt E. Oates,
  • Miguel Bernabe-Rubio,
  • James Williams,
  • Natalie Zelenka,
  • Arun Prasad Pandurangan,
  • Himani Tandon,
  • Hashem Shihab,
  • Raju Kalaivani,
  • Minkyung Sung,
  • Adam J. Sardar,
  • Bastian Greshake Tzovoras,
  • Davide Danovi,
  • Julian Gough

DOI
https://doi.org/10.1038/s41467-023-36634-6
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Systematically predicting phenotypes or disease risks based on the information of an individual’s genetic variation remains an unsolved challenge. Here, the authors develop a knowledge-based approach for performing and evaluating hypothesis-free phenotype prediction directly from a human genome.