A giant spin molecule with ninety-six parallel unpaired electrons
Lei Qin,
Hao-Lan Zhang,
Yuan-Qi Zhai,
Hiroyuki Nojiri,
Christian Schröder,
Yan-Zhen Zheng
Affiliations
Lei Qin
Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research Academy, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an 710054, China
Hao-Lan Zhang
Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research Academy, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an 710054, China
Yuan-Qi Zhai
Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research Academy, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an 710054, China
Hiroyuki Nojiri
Institute of Materials Research (IMR), Tohoku University, Katahira, Sendai 980-8577, Japan
Christian Schröder
Bielefeld Institute for Applied Materials Research, Bielefeld University of Applied Sciences, D-33619 Bielefeld, Germany; Faculty of Physics, Bielefeld University, D-33615 Bielefeld, Germany
Yan-Zhen Zheng
Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Shenzhen Research Academy, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an 710054, China; Corresponding author
Summary: Unpaired electrons which are essential for organic radicals and magnetic materials are hardly to align parallel, especially upon the increasing of spin numbers. Here, we show that the antiferromagnetic interaction in the largest Cr(III)-RE (rare earth) cluster {Cr10RE18} leads to 96 parallel electrons, forming a ground spin state ST of 48 for RE = Gd. This is so far the third largest ground spin state achieved in one molecule. Moreover, by using the classical Monte Carlo simulation, the exchange coupling constants Jij can be determined. Spin dynamics simulation reveals that the strong Zeeman effects of 18 Gd(III) ions stabilize the ground ferrimagnetic state and hinder the magnetization reversals of these spins. In addition, the dysprosium(III) analog is an exchange-biasing single-molecule magnet. We believe that the ferrimagnetic approach and analytical protocol established in this work can be applied generally in constructing and analyzing giant spin molecules.