Materials Research Express (Jan 2024)

Microstructure and mechanical characteristics of Al1050/B2O3+Cu hybrid surface nanocomposite fabricated using friction stir processing

  • Siamak Pedrammehr,
  • Moosa Sajed,
  • Sajjad Pakzad,
  • Ahad Zare Jond,
  • Mir Mohammad Ettefagh,
  • Saman Tutunchilar

DOI
https://doi.org/10.1088/2053-1591/ad74cc
Journal volume & issue
Vol. 11, no. 9
p. 096503

Abstract

Read online

In the realm of advanced materials engineering, the development of hybrid nanocomposites has garnered significant attention due to their superior mechanical properties and potential applications. The primary aim of this research is to develop a surface hybrid nanocomposite using Al1050 aluminium alloy (5 mm thickness) as the base material through friction stir processing. B _2 O _3 nano-powder, averaging 100 nm in size, and Cu micro-powder, averaging 5 μm in size, were incorporated into the aluminium surface in various volume ratios using the Friction Stir Processing (FSP). The processing parameters included a tool rotational speed of 1250 rpm, a feed rate of 50 mm min ^−1 , and a tilt angle of 3°. The number of passes was set at two levels: 1 and 3 passes. The influence of the volume ratio of constituents and the number of passes on the microstructure and mechanical properties of the resulting composite was thoroughly explored. The samples underwent tensile tests, microhardness tests, and metallographic examinations using both Optical Microscopy (OM) and Field Emission Scanning Electron Microscopy (FE-SEM). The composite with 25%-B _2 O _3 -75%-Cu composition exhibited the highest stress and hardness values, measuring 139 MPa and 58.14 HV, respectively. The enhanced strength of this sample is attributed to the presence of additives and the resultant grain size.

Keywords