Magnetic Resonance (Sep 2024)
Design and performance of an oversized-sample 35 GHz EPR resonator with an elevated <i>Q</i> value
Abstract
Continuous-wave electron paramagnetic resonance (EPR) spectroscopy at 35 GHz is an essential cornerstone in multi-frequency EPR studies and is crucial for differentiating multiple species in complex systems due to the improved g-tensor resolution compared to lower microwave frequencies. Especially for unstable and highly sensitive paramagnetic centers, the reliability of the measurements can be improved upon through the use of a single sample for EPR experiments at all frequencies. Besides the advantages, the lack of common availability of oversized-sample resonators at 35 GHz often limits scientists to lower frequencies or smaller sample geometries, and the latter may be non-trivial for sensitive materials. In this work, we present the design and performance of an oversized-sample 35 GHz EPR resonator with a high loaded Q value, QL, of up to 2550, well-suited for continuous-wave EPR and pulsed single-microwave-frequency experiments. The design is driven by electromagnetic field simulations, and the microwave characteristics of manufactured prototypes were found to be in agreement with the predictions. The resonator is based on a cylindrical cavity with a TE011 mode, allowing for 3 mm sample access. The design targets that we met include high sensitivity, robustness, and ease of manufacturing and maintenance. The resonator is compatible with commercial EPR spectrometers and with helium flow, as well as with cryogen-free cryostats, allowing for measurements at temperatures down to 1.8 K. To highlight the general applicability, the resonator was tested on metal centers, as well as on organic radicals featuring extremely narrow lines.