Cancers (Oct 2021)

Potential Morbidity Reduction for Lung Stereotactic Body Radiation Therapy Using Respiratory Gating

  • Kim Melanie Kraus,
  • Cristoforo Simonetto,
  • Pavel Kundrát,
  • Vanessa Waitz,
  • Kai Joachim Borm,
  • Stephanie Elisabeth Combs

DOI
https://doi.org/10.3390/cancers13205092
Journal volume & issue
Vol. 13, no. 20
p. 5092

Abstract

Read online

We investigated the potential of respiratory gating to mitigate the motion-caused misdosage in lung stereotactic body radiotherapy (SBRT). For fourteen patients with lung tumors, we investigated treatment plans for a gating window (GW) including three breathing phases around the maximum exhalation phase, GW40–60. For a subset of six patients, we also assessed a preceding three-phase GW20–40 and six-phase GW20–70. We analyzed the target volume, lung, esophagus, and heart doses. Using normal tissue complication probability (NTCP) models, we estimated radiation pneumonitis and esophagitis risks. Compared to plans without gating, GW40–60 significantly reduced doses to organs at risk without impairing the tumor doses. On average, the mean lung dose decreased by 0.6 Gy (p p = 0.003), esophageal dose to 5cc by 2.0 Gy (p = 0.003), and maximum heart dose by 3.2 Gy (p = 0.009). The model-estimated mean risks of 11% for pneumonitis and 12% for esophagitis without gating decreased upon GW40–60 to 7% and 9%, respectively. For the highest-risk patient, gating reduced the pneumonitis risk from 43% to 32%. Gating is most beneficial for patients with high-toxicity risks. Pre-treatment toxicity risk assessment may help optimize patient selection for gating, as well as GW selection for individual patients.

Keywords