Journal of Advanced Ceramics (Apr 2020)

Determination of polarization states in (K,Na)NbO3 lead-free piezoelectric crystal

  • Mao-Hua Zhang,
  • Chengpeng Hu,
  • Zhen Zhou,
  • Hao Tian,
  • Hao-Cheng Thong,
  • Yi Xuan Liu,
  • Xing-Yu Xu,
  • Xiao-Qing Xi,
  • Jing-Feng Li,
  • Ke Wang

DOI
https://doi.org/10.1007/s40145-020-0360-2
Journal volume & issue
Vol. 9, no. 2
pp. 204 – 209

Abstract

Read online

Abstract Polarization switching in lead-free (K0.40Na0.60)NbO3 (KNN) single crystals was studied by switching spectroscopy piezoresponse force microscopy (SS-PFM). Acquisition of multiple hysteresis loops on a closely spaced square grid enables polarization switching parameters to be mapped in real space. Piezoresponse amplitude and phase hysteresis loops show collective symmetric/asymmetric characteristics, affording information regarding the switching behavior of different domains. As such, the out-of-plane polarization states of the domains, including amplitudes and phases can be determined. Our results could contribute to a further understanding of the relationships between polarization switching and polarization vectors at the nanoscale, and provide a feasible method to correlate the polarization hysteresis loops in a domain under an electric field with the polarization vector states.

Keywords