BMC Cancer (Sep 2009)

Noninvasive detection of lung cancer by analysis of exhaled breath

  • Denz Hubert,
  • Filipiak Wojciech,
  • Ligor Tomasz,
  • Ligor Magdalena,
  • Schwarz Konrad,
  • Klieber Martin,
  • Pienz Martin,
  • Ager Clemens,
  • Bajtarevic Amel,
  • Fiegl Michael,
  • Hilbe Wolfgang,
  • Weiss Wolfgang,
  • Lukas Peter,
  • Jamnig Herbert,
  • Hackl Martin,
  • Haidenberger Alfred,
  • Buszewski Bogusław,
  • Miekisch Wolfram,
  • Schubert Jochen,
  • Amann Anton

DOI
https://doi.org/10.1186/1471-2407-9-348
Journal volume & issue
Vol. 9, no. 1
p. 348

Abstract

Read online

Abstract Background Lung cancer is one of the leading causes of death in Europe and the western world. At present, diagnosis of lung cancer very often happens late in the course of the disease since inexpensive, non-invasive and sufficiently sensitive and specific screening methods are not available. Even though the CT diagnostic methods are good, it must be assured that "screening benefit outweighs risk, across all individuals screened, not only those with lung cancer". An early non-invasive diagnosis of lung cancer would improve prognosis and enlarge treatment options. Analysis of exhaled breath would be an ideal diagnostic method, since it is non-invasive and totally painless. Methods Exhaled breath and inhaled room air samples were analyzed using proton transfer reaction mass spectrometry (PTR-MS) and solid phase microextraction with subsequent gas chromatography mass spectrometry (SPME-GCMS). For the PTR-MS measurements, 220 lung cancer patients and 441 healthy volunteers were recruited. For the GCMS measurements, we collected samples from 65 lung cancer patients and 31 healthy volunteers. Lung cancer patients were in different disease stages and under treatment with different regimes. Mixed expiratory and indoor air samples were collected in Tedlar bags, and either analyzed directly by PTR-MS or transferred to glass vials and analyzed by gas chromatography mass spectrometry (GCMS). Only those measurements of compounds were considered, which showed at least a 15% higher concentration in exhaled breath than in indoor air. Compounds related to smoking behavior such as acetonitrile and benzene were not used to differentiate between lung cancer patients and healthy volunteers. Results Isoprene, acetone and methanol are compounds appearing in everybody's exhaled breath. These three main compounds of exhaled breath show slightly lower concentrations in lung cancer patients as compared to healthy volunteers (p Conclusion GCMS-SPME is a relatively insensitive method. Hence compounds not appearing in exhaled breath of healthy volunteers may be below the limit of detection (LOD). PTR-MS, on the other hand, does not need preconcentration and gives much more reliable quantitative results then GCMS-SPME. The shortcoming of PTR-MS is that it cannot identify compounds with certainty. Hence SPME-GCMS and PTR-MS complement each other, each method having its particular advantages and disadvantages. Exhaled breath analysis is promising to become a future non-invasive lung cancer screening method. In order to proceed towards this goal, precise identification of compounds observed in exhaled breath of lung cancer patients is necessary. Comparison with compounds released from lung cancer cell cultures, and additional information on exhaled breath composition in other cancer forms will be important.