Remote Sensing (Sep 2024)

Complex Discontinuity Structure Beneath the Changbaishan-Tianchi Volcano Revealed by the P-Wave Coda Autocorrelation Method Based on Dense Seismic Array

  • Hao Wen,
  • You Tian,
  • Cai Liu,
  • Hongli Li

DOI
https://doi.org/10.3390/rs16193615
Journal volume & issue
Vol. 16, no. 19
p. 3615

Abstract

Read online

The Changbai volcano, a globally recognized hotspot of volcanic activity, has garnered significant attention due to its persistent seismicity and ongoing magma activity. The volcano’s discontinuities and magma dynamics have raised concerns about the likelihood of future eruptions, which would likely result in substantial ecological, climatic, and economic impacts. Consequently, a comprehensive understanding of the Changbai volcanic system is essential for mitigating the risks associated with volcanic activity. In recent years, the P-wave coda autocorrelation method has gained popularity in lithosphere exploration as a reliable technique for detecting reflection coefficients. Additionally, the Common Reflection Point stacking approach has been employed to superimpose reflection signals in a spatial grid, enabling continuous observation of reflection coefficients in the study area. However, the accuracy of this approach is heavily reliant on better spatial data coverage. To better understand the internal dynamics of the Changbai volcano, we applied this approach to a densely packed short-period seismic array with an average station spacing of less than 1 km. Our results were constrained using waveform data of reflection coefficients and Moho dip angles. Our findings revealed a discontinuity in the Moho, which may indicate a conduit for mantle magma entering the crust. Furthermore, we identified two low-velocity anomalies within the crust, likely representing a magma chamber comprising molten and crystallized magma. Notably, our results also provided a clear definition of the lithosphere–asthenosphere boundary.

Keywords